

 PoKeys PoIL processor manual

copyright PoLabs 2013-2016

All rights reserved

Version: 21/1/2017

PoKeys PoIL processor manual

2 www.poscope.com

Please read the following notes

1. All information included in this document is current as of the date this document is issued. Such information, however,

is subject to change without any prior notice.

2. PoLabs does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of

third parties by or arising from the use of PoLabs products or technical information described in this document. No

license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property

rights of PoLabs or others. PoLabs claims the copyright of, and retains the rights to, all material (software, documents,

etc.) contained in this release. You may copy and distribute the entire release in its original state, but must not copy

individual items within the release other than for backup purposes.

3. Descriptions of circuits, software and other related information in this document are provided only to illustrate the

operation of the products and application examples. You are fully responsible for the incorporation of these circuits,

software, and information in the design of your equipment. PoLabs assumes no responsibility for any losses incurred by

you or third parties arising from the use of these circuits, software, or information.

4. PoLabs has used reasonable care in preparing the information included in this document, but PoLabs does not warrant

that such information is error free. PoLabs assumes no liability whatsoever for any damages incurred by you resulting

from errors in or omissions from the information included herein.

5. PoLabs devices may be used in equipment that does not impose a threat to human life in case of the malfunctioning,

such as: computer interfaces, office equipment, communications equipment, test and measurement equipment, audio

and visual equipment, home electronic appliances, machine tools, personal electronic equipment, and industrial robots.

6. Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when PoLabs

devices are used for or in connection with equipment that requires higher reliability, for example: traffic control

systems, anti-disaster systems, anticrime systems, safety equipment, medical equipment not specifically designed for

life support, and other similar applications.

7. PoLabs devices shall not be used for or in connection with equipment that requires an extremely high level of reliability

and safety, as for example: aircraft systems, aerospace equipment, nuclear reactor control systems, medical equipment

or systems for life support (e.g. artificial life support devices or systems), and any other applications or purposes that

pose a direct threat to human life.

8. You should use the PoLabs products described in this document within the range specified by PoLabs, especially with

respect to the maximum rating, operating supply voltage range and other product characteristics. PoLabs shall have no

liability for malfunctions or damages arising out of the use of PoLabs products beyond such specified ranges.

9. Although PoLabs endeavors to improve the quality and reliability of its products, semiconductor products have specific

characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions.

Further, PoLabs products are not subject to radiation resistance design. Please be sure to implement safety measures

to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of

a PoLabs product, such as safety design for hardware and software including but not limited to redundancy, fire control

and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures.

10. Usage: the software in this release is for use only with PoLabs products or with data collected using PoLabs products.

11. Fitness for purpose: no two applications are the same, so PoLabs cannot guarantee that its equipment or software is

suitable for a given application. It is therefore the user's responsibility to ensure that the product is suitable for the

user's application.

12. Viruses: this software was continuously monitored for viruses during production, however the user is responsible for

virus checking the software once it is installed.

13. Upgrades: we provide upgrades, free of charge, from our web site at www.poscope.com. We reserve the right to charge

for updates or replacements sent out on physical media.

14. Please contact a PoLabs support for details as to environmental matters such as the environmental compatibility of

each PoLabs product. Please use PoLabs products in compliance with all applicable laws and regulations that regulate

the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. PoLabs assumes no

liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

15. Please contact a PoLabs support at support@poscope.com if you have any questions regarding the information

contained in this document or PoLabs products, or if you have any other inquiries.

16. The licensee agrees to allow access to this software only to persons who have been informed of and agree to abide by

these conditions.

17. Trademarks: Windows is a registered trademark of Microsoft Corporation. PoIL, PoKeys, PoKeys55, PoKeys56U,

PoKeys56E, PoScope, PoLabs and others are internationally registered trademarks.

PoKeys PoIL processor manual

3 www.poscope.com

Table of contents

PoKeys PoIL processor ... 4

Architectural overview .. 4

Status register (8-bit) ... 4

Stack .. 5

Program counter ... 5

Multitasking ... 5

Addressing modes ... 5

Data types .. 6

Data stack operations .. 6

Memory organization .. 8

Code memory with system functions calls .. 8

Data memory ... 14

PoIL instruction set .. 16

PoIL instruction format .. 16

Operand data types (sizes) .. 16

Instruction set summary.. 17

Core states ... 18

Comments ... 18

Vector commands ... 18

Address labels .. 19

Syntax .. 19

Direct addressing mode... 20

Index addressing mode ... 20

Stack push/pop .. 20

Literals ... 21

Detailed instruction description .. 22

Start-up configuration ... 28

Shared data management ... 28

Custom PoIL block application examples .. 29

Min, max, average meter over interval ... 29

Grant of license ... 31

PoKeys PoIL processor manual

4 www.poscope.com

PoKeys PoIL processor
PoKeys PoIL processor is a 16/32-bit software processor, which executes PoIL code, and is used in

supported PoKeys devices. The processor employs Harvard architecture with reduced instruction set

(RISC).

The processor has one 32-bit working register (named W) and advanced set of assembly commands

that allow high compatibility with higher programming languages (oriented towards the languages

defined by IEC 61131 standard). The PoIL processor targets application where the advanced PoKeys

input-output interface card can be equipped with additional logic in order to allow the autonomous

operation without a host PC. With the rich set of features, PoIL processor transforms a PoKeys device

into a low-cost Programmable Logic Controller (PLC) with easy to learn syntax.

Architectural overview
The PoIL processor features a number of architectural properties commonly found in RISC

microprocessors. As mentioned before, PoIL processor employs Harvard architecture in which code

and data memory are accessed separately, giving the developer a better overview of the memory.

The separated code and data memories both use 16-bit (byte-) addressing (both in LSB first

configuration). Special regions in the data memory are assigned to specific functions, as are defined

in Table 1. Similarly, special regions in code memory are assigned to specific system functions, as

defined in Table 2. Additionally, code memory is 16-bit aligned (instructions must reside on even

addresses only).

The PoIL processor supports four different addressing modes – direct, indirect, stack and literal – as is

described later on. The majority of the commands in the instruction set can use any of the addressing

mode, thus allowing the combination of fetch+execute or execute+store in one command. The

instructions are 16-bit wide with optional additional operand’s value or operand’s address. The

instruction set consists of commands for managing fetching and storing data, logical operations

(AND, OR, XOR), bit operations (bit set, bit clear, bit toggle), arithmetic operations (addition,

subtraction, multiplication, division, modulus, bit-shifting left and right), compare operations (if

greater, if greater or equal, if equal, if not equal, if lower than or equal, if lower, bit test) and

execution manipulation commands (jump, jump if true, jump if false, call, return, exit task). The 32-

bit working register is used for different arithmetic and logic operations and is not directly

addressable (just its read-only value is accessible at 0xFF0C).

The result of the executed instruction (mostly the compare operations) is saved in the bit 7 (L) of the

status register.

Status register (8-bit)

7 6 5 4 3 2 1 0

 Logical
result

Bit Symbol Description

7:1 - Reserved

0 L Logical operation result

PoKeys PoIL processor manual

5 www.poscope.com

Stack

PoIL processor uses two separated stacks – one is used for the operand storage (data stack), while

the other is used for the address storage (function stack). Data stack contains 32-bit entries, while

the function stack contains 16-bit entries.

The exact size of each stack is dependent on the processor implementation.

Device Function stack size Data stack size

PoKeys56 series 64 32

PoKeys57 series 64 32

Program counter

Program counter (PC) is a processor register that indicates where the execution is in the current

program sequence. The program counter value is increased by 2, 4 or 6 after each instruction cycle,

unless the instruction changes the counter’s value. The exact amount by which the PC counter is

incremented depends on the presence of the operand and its format.

For a ‘JMP’, ‘JMPT’, ‘JMPF’ instructions, the 16-bit operand value is copied to the program counter

and the execution is effectively diverted to the address specified by the operand.

For a ‘CALL’ instruction, the current PC value is pushed onto the function stack and the 16-bit

operand value is copied to the program counter.

For a ‘RETURN’ instruction, the value is popped from the function stack and copied to the PC value.

Multitasking

The PoIL processor supports priority-based pre-emptive scheduler that switches between two (or

more on later versions) tasks. Task 0 has the lowest priority and is enabled by default. Other tasks are

periodic tasks that have a fixed time-period between executions. Tasks 1 and on must be enabled

first using the task configuration system function.

Task switching is done at 1 ms intervals or on task exit events.

Addressing modes

Addressing mode Opcode format Description

Direct address Direct addressing mode uses the value stored at the
address, specified in the operand

Indirect [address] Indirect addressing mode uses the value stored at the
address that is stored at the address, specified in the
operand. This mode can be described as using pointers to
access the data.

Stack S This operation uses stack to exchange the data. No data
type is specified, as this mode always uses 32-bit data.

Literal L[value] The operand's value is specified as a constant value. For bit
data types, the value is ignored to save memory space and
bit inversion ! sign must be used to load bit 1.

PoKeys PoIL processor manual

6 www.poscope.com

Data types

The PoIL processor directly supports 4 data types. The data type defines the type of data that gets

manipulated in memory.

Data type Symbol Use

Bit (Boolean) b LOAD b!1234.3 # Load inverted bit 3 from 1234 to W
ADD b20.5 # Add bit 5 from address 20 to W
LOAD bL[0].0 # Load bit value 0 to W
LOAD b!L[0].0 # Load bit value 1 to W

Byte B LOAD Bh10 # Load 0x10 (16) to W
ADD B[50] # Add the byte value from the register with the
address that is saved in register 50 to W

Word W ADD WL[1500] # Load constant value of 1500 to W

Double word D PUSH DL[hFF] # Push 0xFF (15) to stack

Data stack operations

There are 4 basic stack operations

Operation Description Example

PUSH operand Push the operand's
value to stack

Equivalent of (with the
W unaffected):
LOAD operand
STORE S

PUSH DL[10] # Push value of 10 to stack
PUSH W5 # Push the 16-bit value of register at the
address of 5 to stack

STORE S Push the value of W to
stack

STORE S # Store the W to stack

POP operand Pop the value from
stack and save it to
operand

Equivalent of (with the
W unaffected):
LOAD S
STORE operand

POP D0 # Pop the 32-bit value from stack and save it
to the register at 0

LOAD S Pop the value of W
from stack

LOAD S # Retrieve the W from stack

The following figure illustrates how data in data stack, working register and in data memory can be

manipulated.

PoKeys PoIL processor manual

7 www.poscope.com

Data stack

Data memory
/ literals

Working
register W

LOAD operand

STORE operand

LOAD S

STORE S
PUSH operand

POP operand

PoKeys PoIL processor manual

8 www.poscope.com

Memory organization
The PoIL processor memories are organized into code and data memory. Both memories are

addressable by bytes. Also, both program counter and data addressing pointer are 16-bit, thus

capable of addressing of up to 65536 bytes. However, only specific areas of the memory may be

accessible to the processor, as is specified below.

Code memory with system functions calls

Code memory address Function

0x0000 - 0x0FFF Code memory (PoKeys56 series)

0x0000 - 0x7FFF Code memory (PoKeys57 series)

0xFF00 - 0xFFFF Special system calls

0xFF00

Task configuration function (parameters on stack)
- Param 1: task ID
- Param 2: task period (set to 0 to disable task)
- Param 3: task start address

0xFF02 Encoder configuration
- Param 1: encoder ID
- Param 2: pin A
- Param 3: pin B
- Param 4: option

0xFF03 (deprecated in
PoKeys57 series - see
0xFF17 for new function)

Configure Pulse engine axes speed/accelerations (float values)
- Param 1: x max speed / ms
- Param 2: x max acceleration / ms2
- Param 3: x max deceleration / ms2
- Param 4: y max speed / ms
- Param 5: y max acceleration / ms2
- Param 6: y max deceleration / ms2
- Param 7: z max speed / ms
- Param 8: z max acceleration / ms2
- Param 9: z max deceleration / ms2
- Param 10: reserved - 0

0xFF04 (deprecated in
PoKeys57 series - see
0xFF17 for new function)

Pulse engine axes switches/directions configuration
- Param 1: bit encoded switches configuration for x axis

o Bit 0: x home switch
o Bit 1: x limit- switch
o Bit 2: x limit+ switch
o Bit 3: home/limit combined switch
o Bit 4: invert x axis
o Bit 5: invert x homing direction

- Param 2: bit encoded switches configuration for y axis
- Param 3: bit encoded switches configuration for z axis
- Param 4: number of axes - set to 3

0xFF05 Pulse engine - command a move
- Param 1: x reference value
- Param 2: y reference value
- Param 3: z reference value
- Param 4: bit encoded commands for position/speed

o Bit 0: go in position mode
o Bit 1: go in speed mode

- Param 5: number of axes - set to 3

PoKeys PoIL processor manual

9 www.poscope.com

0xFF06 Put variable to LCD
- Param 1: variable value
- Param 2: format and position

o Bit 0: always show sign
o Bits 1-4: display digits count
o Bits 5-8: zero-padded digits count
o Bits 9-11: decimals count (float data)
o Bits 12-13: LCD row
o Bits 14-18: LCD column

- Param 3: optional: multiplier (float)
- Param 4: variable type - integer (0-9, equals to decimal

places), float(10)

0xFF07 Initialize LCD
- Param 1:

o Bits 0-7: LCD configuration (0 primary/1 secondary)
o Bits 8-15: LCD rows
o Bits 16-23: LCD columns

0xFF08 Configure counter on digital input pin
- Param 1:

o Bits 0-7: counting pin
o Bits 8-15: direction pin + 1 (set to 0 to disable)
o Bit 16: count rising edges
o Bit 17: count falling edges

0xFF09 Configure multi-function analog input pin (on selected devices only)
- Param 1:

o Bits 0-7: analog pin ID
o Bits 8-10: analog function
o Bits 11-13: conversion resolution
o Bits 14-18: additional parameters

0xFF0A Configure and operate 1-wire devices
- Param 1: Operation

o 0x00 - disable 1-wire
o 0x01 - enable 1-wire
o 0x10 - Start write and read
o 0x11 - Read status/result and data

- Param 2: Data pointer (n x 8-bit)
- Param 3: Data count to write (n)
- Param 4: Data count to read

Returns:
- Param 1: Status

0xFF0B Configure and operate I2C devices
- Param 1: Operation

o 0x10 - Start write
o 0x11 - Get write result
o 0x20 - Start read
o 0x21 - Get read result

- Param 2: Data pointer (n x 8-bit) - for operations 0x10, 0x21
- Param 3: Device address
- Param 4: Data count (bits 0-7: data count to write or read,

bits 8-15: data count to read if combined transaction is
required - bits 0-7 in this case equal to count of bytes to

PoKeys PoIL processor manual

10 www.poscope.com

write) - up to 30 bytes per transaction
Returns:

- Param 1: Status (0 - error, 1 - OK, 0x10 - pending)

0xFF0C Configure and operate SPI bus
- Param 1: Operation

o 0x10: Initialize (param 2 for prescaler and param 3
for format)

o 0x20: Transfer data (number of data bytes in param
2)

o 0x30: Get result
- Param 2: Prescaler configuration (0x10) or number of bytes

(0x20)
- Param 3: Format (0x10) or data pointer (n x 8-bit)
- Param 4: Pin select pin index

Returns:
- Param 1: Status (0 - ready, 1 - busy, 10 - error)

0xFF10 Timer block functionality
- Param 1: Timer type (0-pulse, 10-ON, 20-OFF)
- Param 2: Timer period in ms
- Param 3: Previous input
- Param 4: Current input
- Param 5: Previous output
- Param 6: 32-bit temporary variable

Returns:
- Param 1: new output value
- Param 2: timer time (ET) value in ms
- Param 3: 32-bit temporary variable

0xFF11 Counter block functionality
- Param 1: counter type (0 – up, 1 – down, 2 – up/down)
- Param 2: counter PV value (preset value)
- Param 3: counter CV value (current)
- Param 4: input 1
- Param 5: input 1 previous value
- Param 6: input 2
- Param 7: input 2 previous value
- Param 8: reset
- Param 9: load PV to CV

Returns:
- Param 1: output UP
- Param 2: output DOWN
- Param 3: CV value

0xFF12 Look-up table functionality
- Params 1-10: look-up table entries (LSB first)
- Param next: look-up table index (0 to 39) in LSB byte,

number of entries in MSB byte
Returns:

- Param 1: look-up table data (8-bit)

0xFF13 Time-scheduling functionality
- Params 1-10: schedule entries (1 to 10 entries)

o Bits 0-5: onMinute
o Bits 6-10: onHour

PoKeys PoIL processor manual

11 www.poscope.com

o Bits 11-16: offMinute
o Bits 17-21: offHour
o Bits 22-28: bit-encoded week days
o Bits 29-31: unused

- Param next: number of schedules (1-10)
Returns:

- Param 1: On/Off value

0xFF14 PID controller
- Param 1: PV
- Param 2: SP
- Param 2: Pointer to parameters memory (7x 32-bit)

 Parameter 1: Kp

 Parameter 2: Ki

 Parameter 3: Kd

 Parameter 4: Kf1

 Parameter 5: Kf2

 Parameter 6: low limit

 Parameter 7: high limit
- Param 3: Pointer to PID memory (2x 32-bit)

0xFF15 Look-up table functionality - 32-bit
- Params 1-10: look-up table entries (LSB first)
- Param next: look-up table index (0 to 9) in LSB byte, number

of entries in MSB byte
Returns:

- Param 1: look-up table data (32-bit)

0xFF16 Additional functions (PoKeys57 series only)
- 0-10 parameters

- Function selection
Returns:

- 0-10 parameters

Float number type is saved in 32-bit integer number memory slot.
The float number type should only be used with functions that
accept or return this type.

Functions:

0x1000 - Calculate power of number
 - params: exponent, base (float)
 - returns: base ^ exponent (float)

0x1010 - Operation over one float - no checking
 - params: number (float), opNr
 - returns: operation over number (float)
 - opNr: 0=exp, 1=sin, 2=cos, 3=tan, 4=asin, 5=acos, 6=fabs

0x1011 - Operation over one float - zero checking
 - params: number (float), opNr
 - returns: operation over number (float)
 - opNr: 0=log, 1=log10, 2=atan

0x1020 - Operation over two floats

PoKeys PoIL processor manual

12 www.poscope.com

 - params: numbers y, x (float), opNr
 - returns: operation over x and y (float)
 - opNr: 0=pow(x,y), 1=atan2(x,y)

0x1100 - Sum two floats
 - params: numbers y, x (float)
 - returns: x+y (float)

0x1101 - Subtract two floats
 - params: numbers y, x (float)
 - returns: x-y (float)

0x1102 - Multiply two floats
 - params: numbers y, x (float)
 - returns: x*y (float)

0x1103 - Divide two floats
 - params: numbers y, x (float)
 - returns: x/y (float)

0x2000 - Convert from float to integer
 - params: x (float)
 - returns: x (int)

0x2001 - Convert from integer to float
 - params: x (int)
 - returns: x (float)

0x3000 - Convert float to scientific notation
 - params: x (float), l (int)
 - returns: a, b (int), where x=a*10^b, a is multiplied by 10^l

0xFF17 Pulse engine axis configuration function (PoKeys57 series only)
- Param 1: Axis index (0 to 7)
- Param 2: Configuration selection

o 0 - set maximum speed (steps/s)
o 1 - set maximum acceleration (steps/s2)
o 2 - set maximum deceleration (steps/s2)
o 10 - axis options (see 0x85/0x11 command in

protocol specifications)
o 11 - axis switch options (see comment above)
o 12 - home input setting (see comment above)
o 13 - limit- input setting (see comment above)
o 14 - limit+ input setting (see comment above)

- Param 3: parameter value
Returns:

- nothing

0xFF18 Pulse engine commands
- last Param: Command ID (this parameter is put on stack on

the last position)
o 0 - Execute home on selected axes

 Param 1: bit-mapped axes to home

PoKeys PoIL processor manual

13 www.poscope.com

Returns:
- Parameter values (0-N)
- Last parameter: N - number of parameters

0xFF19 UDP sender functionality
- Last param: Command ID (this parameter is put on stack on

the last position)
o 0 - send UDP packet

 Param 1: 32-bit target IP address
 Param 2: 16-bit target port number

o 1 - clear UDP packet buffer
o 10 - append text/binary data to UDP packet

 Params 1-10: up to 40 bytes (stored in up to
10x 32-bit stack entries)

 Second to last param: number of
characters/bytes

o 11 - append number to UDP packet
 Param 1: number
 Param 2: format

 Bit 0: always show sign

 Bits 1-4: display digits count

 Bits 5-8: zero-padded digits count

 Bits 9-11: decimals count

0xFF1A InterCom functionality
- Last param: Command ID in lower 8 bits and target serial

number (upper 24 bits)
o 0 - Send single InterCom data packet

 Param 1: Data ID (lower 16 bits)
 Param 2: data value

Table 1: Code memory

PoKeys PoIL processor manual

14 www.poscope.com

Data memory

Data memory address Data
type

Access Function

0x0000 - 0x0FFF Peripheral access (volatile memory)

0x0000 b,B,W,D R/W Digital pins (single input/output status per memory slot)

0x0064 b,B,W,D R/W Digital pin functions
if bit 2 is set, the following rules are used (for writing
operation):

- Bit 0: if 1, set the output to the value, specified
by bit 1

- Bit 1: digital output value

0x00F0 b,B,W,D R/W Digital pins (8 bit-mapped input/output statuses per
memory slot)

0x0100 b,B R Matrix keyboard inputs (1 byte/input)

0x0200 D R/W Encoders – 4 bytes/encoder

0x0300 W R Analog inputs – 2 bytes/input

0x0380 D R Analog inputs - 4 bytes/input

0x0400 D R/W Digital input counters – 4 bytes/counter

0x04E0 D R Digital input capture counter values (on times) - 4 bytes /
counter

0x04F0 D R Digital input capture counter values (off times) - 4 bytes /
counter

0x0500 D R/W Sensor values (27 sensors on PoKeys56) – 4 bytes/sensor

0x05F8 b,D R Sensor OK values (bit encoded)

0x0600 W R RTC values
0 – Second, 2 – Minute, 4 – Hour, 6 – Day of week, 8 –
Day of month, 10 – Month, 12 – Year

0x0610 W R PPM decoder values (8 channels) - 2 bytes/channel

0x0620 W R PPM decoder data age value (in 0.1 ms, max. 1000 ms)

0x0630 b,B R/W Joystick override flags:
0: bit-mapped joystick axes override
1-4: bit-mapped joystick buttons override
5: HAT switch override

0x0640 W R/W Joystick axis override values (6 values, 2 bytes/axis)

0x0650 b,B R/W Joystick buttons (4 bytes, bit-mapped), HAT switch (1
byte)

0x0700 D R/W PWM period - 4 bytes

0x0704 D W PWM period - 4 bytes -> writing to this address will not
immediately reset the PWM counters

0x0710 B R/W PWM config registers – 1 byte per output

0x0720 D R/W PWM outputs duty cycles – 4 bytes per output

0x0800 b,B R/W PoExtBus outputs

0x0900 D R/W Pulse engine positions (8 axes)

0x0920 D R/W Reference position (8 axes)

0x0940 D R/W Reference speed (8 axes) (in steps/second)

0x0960 D R Probe position (8 axes)

0x0980 B R/W Pulse engine state

0x0981 B,b R/W Invert axis enable

0x0982 B,b R Limit+ status

0x0983 B,b R Limit- status

0x0984 B,b R Home switch status

0x0985 B,b R/W Limit override

0x0986 B,b R Error inputs status

PoKeys PoIL processor manual

15 www.poscope.com

0x0987 B,b R/W Axis enabled mask

0x0988 B R Axes states (see protocol specifications)

0x0990 B R/W Axes configuration (see protocol specifications)

0x0998 B R/W Axes switch configuration

0x09A0 B,b R Misc input status

0x09A1 B,b R/W External relay outputs

0x09A2 B,b R/W External OC outputs

0x09A3-0x09A7 reserved

0x09A8 B R/W MPG jog encoder setup

0x09B0 W R/W MPG jog multiplier (8 axes)

0x0A00 b,B,W,D R/W Battery-backed RAM (20-bytes)

0x0B00 B W LCD buffer (80-bytes)

0x0BFF B W Writing any data to address 0x0BFF triggers the refresh
of the LCD

0x0C00 B R Current device’s IP address (4 successive bytes)

0x0C06 B R Current gateway IP address (4 successive bytes)

0x0C0C B R Current network mask (4 successive bytes)

0xC012 B R DHCP status

0x0D00 D R/W Sensor values (100 sensors on PoKeys57) – 4
bytes/sensor

0x0EF0 b,D R Sensor OK values (bit encoded)

0x0F00 D R/W InterCom data values (total of 64)

0x1000 - 0x10FF Shared data memory

0x1100 - 0x13FF General purpose memory (PoKeys56 series)

0x1100 - 0x1FFF General purpose memory (PoKeys57 series)

0xFF00 - 0xFFFF Special system registers

0xFF00 W R PC (program counter)

0xFF04 B R Status register

0xFF08 D R System timer value (In milliseconds)

0xFF0C D R Working register
Table 2: Data memory

PoKeys PoIL processor manual

16 www.poscope.com

PoIL instruction set
Unlike some specific instruction set implementations, PoIL does not differentiate between bit, 8-bit,

16-bit, 32-bit and literal oriented operations. The instruction set can be separated into the following

categories:

- Processing operations

- Stack operations

- Control operations

PoIL instruction format

PoIL instructions consist of 2 byte opcode and additional operands. The presence and type of the

operand is defined by the addressing mode and operand data type.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Addressing
mode

Operand
data type

Bit index
Bit

invert
Opcode

Bit Symbol Description

15:14 - Addressing mode
00 – the operand contains the address
01 – the operand contains the address of a pointer to an address
10 – the operand is pushed to or popped from stack
11 – the operand is a literal value

13:12 - Operand data type
00 – b: bit (1-bit) – no additional operand if addressing mode is literal or stack,
otherwise 2-byte operand
01 – B: byte (8-bit) – 2-byte operand if addressing mode is not stack
10 – W: word (16-bit) – 2-byte operand if addressing mode is not stack
11 – D: double word (32-bit) – 4-byte operand if addressing mode is literal
value, no operand if addressing mode is stack, 2-byte operand otherwise

11:9 - Bit address (for bit data type)

8 - Bit invert

7:0 OP 8-bit instruction opcode

Operand data types (sizes)

The following table shows the operand size (in bytes) for all combinations of addressing modes and

operand data types.

 Addressing mode

Direct Indirect Stack Literal

Operand data type Bit 2 2 0 0

Byte (8-bit) 2 2 0 2

Word (16-bit) 2 2 0 2

DWord (32-bit) 2 2 0 4

PoKeys PoIL processor manual

17 www.poscope.com

Instruction set summary

Instruction,
operands

Description Instruction
opcode

Notes

Special instructions
NOP No operation 0x00

Stack operations
LOAD o Load W from o 0x01
PUSH o Push o to stack 0x02
STORE o Store W to o 0x80
POP o Pop from stack and save to o 0x81

Logical operations
AND o AND W and o, store to W 0x10
OR o OR W and o, store to W 0x11
XOR o XOR W and o, store to W 0x12
BITSET o Set bit, specified by o, store back to o 0x13
BITCLR o Clear bit, specified by o, store back to o 0x14
BITTGL o Toggle bit, specified by o, store back to o 0x15

Arithmetic operations
ADD o Add W and o, store to W 0x20
SUB o Subtract o from W, store to W 0x21
MUL o Multiply W and o, store to W 0x22
DIV o Divide W by o, store to W 0x23
MOD o Calculate modus of W by o, store to W 0x24
DECT o Decrease value in o, compare with zero 0x25 Result saved in STATUS
ABS o Absolute value of o, store to W 0x26
SHIFTL o Shift W by value of o to the left 0x40
SHIFTR o Shift W by value of o to the right 0x41

Compare operations
CMPGT o Compare – W greater than o ? 0x30 Result saved in STATUS
CMPGTE o Compare – W greater than or equal o ? 0x31 Result saved in STATUS
CMPEQ o Compare – W equal to o ? 0x32 Result saved in STATUS
CMPNEQ o Compare – W not qual to o ? 0x33 Result saved in STATUS
CMPLTE o Compare – W lower than or equal o ? 0x34 Result saved in STATUS
CMPLT o Compare – W lower than o ? 0x35 Result saved in STATUS
BITTST o 0x36 Result saved in STATUS

Control operations
JMP o Unconditional branch to o 0x50
JMPT o Conditional branch to o if L in STATUS is 1 0x51
JMPF o Conditional branch to o if L in STATUS is 0 0x52
CALL o Subroutine call, put PC to stack, jump to o 0x60
RETURN Return from subroutine, pop PC from stack 0x82
EXIT Exit current task 0x83
COPY_V o Copy a vector to o 0x90

PoKeys PoIL processor manual

18 www.poscope.com

Core states

State Description

0 stopped (reset)

10 running

20 debug

100 exception

101 call stack overflow

101 call stack underflow

102 data stack overflow

103 data stack underflow

110 memory exception

111 save to literal not possible

112 vector operation to literal not possible

113 vector operation to pointer not possible

120 PC out of memory space

121 jump to odd address

122 jump instruction expects word operand

130 unknown instruction

140 unknown system function

141 wrong parameter for system function

150 operand not of type 0 for bit instruction

160 division by zero

161 mod by zero

Comments

PoIL compiler supports one-line comments that start with # sign.

This is a one line comment

LOAD S # This is an example of a code line comment that can describe the code at the left

Vector commands

Vector commands are used to specify a larger set of data. The basic commands are identical to other

commands with the addition of additional data items, separated by commas, as shown below:

Copy the set of bytes to location 0x1000
COPY_V Bh1000 5,10,23,124,255,0,5

Copy the set of 32-bit integers to location 0x1000
COPY_V Dh1000 5,10,23,124,255,0,5,-235234,41234123

The length of data bytes must be a multiple of 2.

The data is saved as a set of binary data, following the opcode. First byte specifies the data length

(number of bytes).

PoKeys PoIL processor manual

19 www.poscope.com

Address labels

To assign a label to a specific code section, a text label without spaces and a semicolon (:) sign must

be put before the code section

Example 1

This commands moves the program execution to the next code line under the 'Section_label'
JMP Section_label
…
Code that does not gets executed
…

This section is labelled with the 'Section_label'
Section_label:
Section code below that gets executed

The section label can also be in the same line as the code – simple for loop example:
LOAD BL[10]
STORE Bh1000
forLabel: DECT Dh1000
 JMPF forLabel

Example 2

label:
 LOAD b!1234.0 # load inverted bit from 1234.0
 LOAD Bh100
 ADD WL[1500]
 ADD b!L[0].0 # Add 1
 CMPGT WL[5000]
 JMPT label # default data type W

Syntax

Different addressing modes and data types

direct: ADD B100 # Add W and byte (8-bit) operand from address 100
index: MUL D[0] # Multiply W and double word operand (32-bit) from

address stored at the memory location 0
stack: STORE S # Store (push) W to stack
literal: SUB WL[5] # Subtract word (16-bit) literal (with value 5) from W
bit: BITSET b0.5 # Set bit 5 at the memory address of 0
stackload: PUSH DL[100] # Store (push) literal value 100 to stack
stackstore: POP D10 # Pop the double word (32-bit) value from the stack and #

store it to memory address 10

These examples show that each operand (except for the stack operations) must be provided with the

data type specification:

PoKeys PoIL processor manual

20 www.poscope.com

 b Bit data type – operand must end with .[bit number], where bit number is in the

range 0-7

 B Byte data type

 W Word data type

 D Double word data type

Direct addressing mode

Label: INSTRUCTION {data type}{address}/.{bit}/

{data type} one of the data type specifiers described above – b, B, W or D. If ‘b’ is specified, the

additional parameter {bit} must also be specified.

{address} address of the memory location

/.{bit}/ optional bit parameter

Examples:

 LOAD D100 # Load double word (32-bit) from memory address 100

 BITTST b100.5 # Test bit 5 of the memory address 100

Index addressing mode

Label: INSTRUCTION {data type}[{address}]/.{bit}/

{data type} one of the data type specifiers described above – b, B, W or D. If ‘b’ is specified, the

additional parameter {bit} must also be specified.

[{address}] address of the memory location (of word type) that holds the address of the operand

[.{bit}] optional bit parameter

Examples:

LOAD D[100] # Load double word (32-bit) from memory address that is

saved in address 100

BITTST b[100].5 # Test bit 5 of the memory address that is saved in address

100

Stack push/pop

Label: INSTRUCTION S

Examples:

 LOAD S # Load double word (32-bit) from stack

 ADD S # Add a value from stack to W

PoKeys PoIL processor manual

21 www.poscope.com

Literals

Label: INSTRUCTION {data type}L[{value}]/.{bit}/

{data type} one of the data type specifiers described above – b, B, W or D. If ‘b’ is specified, the

additional parameter {bit} must also be specified.

{value} literal value (in decimal format)

/.{bit}/ optional bit parameter

Examples:

 LOAD DL[100] # Load literal value 100 to W

PoKeys PoIL processor manual

22 www.poscope.com

Detailed instruction description

Instruction
NOP – No operation

Syntax label: NOP

Description No register is affected by NOP instruction execution

Instruction
LOAD – Load W

Syntax label: LOAD O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description W is loaded with the value of O

Instruction
PUSH – Push O to stack

Syntax label: PUSH O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The value of O is pushed to stack. W is not affected by this command

Instruction
STORE – Store W

Syntax label: STORE O

Operand O can be any of the direct memory, indexed memory addressing or stack push

Description The value of W is stored to O

Instruction
POP – Pop from stack and store to O

Syntax label: POP O

Operand O can be any of the direct memory or indexed memory addressing

Description First stack element is pop-ed from stack and saved to O. W is not affected by this
command

Instruction
AND – Bitwise AND between W and O

Syntax label: AND O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description A bitwise AND operation is executed between W and O and the result is saved to
W.

Instruction
OR – Bitwise OR between W and O

Syntax label: OR O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description A bitwise OR operation is executed between W and O and the result is saved to

PoKeys PoIL processor manual

23 www.poscope.com

W.

Instruction
XOR – Bitwise XOR between W and O

Syntax label: XOR O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description A bitwise XOR operation is executed between W and O and the result is saved to
W.

Instruction
BITSET – Set bit

Syntax label: BITSET O

Operand O can be any of the direct memory or indexed memory addressing

Description This operation sets the specified bit of the operand and stores it back. W is not
affected.

Example BITSET b100.5

Instruction
BITCLR – Clear bit

Syntax label: BITCLR O

Operand O can be any of the direct memory or indexed memory addressing

Description This operation clears the specified bit of the operand and stores it back. W is not
affected.

Example BITCLR b100.5

Instruction
BITTGL – Toggle bit

Syntax label: BITTGL O

Operand O can be any of the direct memory or indexed memory addressing

Description This operation toggles the specified bit of the operand and stores it back. W is not
affected.

Instruction
ADD – Add O and W

Syntax label: ADD O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The operand O is added to W and the result is saved to W.

Instruction
SUB – Subtract O from W

Syntax label: SUB O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The operand O is subtracted from W and the result is saved to W.

PoKeys PoIL processor manual

24 www.poscope.com

Instruction
MUL – Multiply O and W

Syntax label: MUL O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description O and W are multiplied and saved to W.

Instruction
DIV – Divide W by O

Syntax label: DIV O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The W is divided by O and the result is saved to W.

Instruction
MOD – Remainder on division of W by O

Syntax label: MOD O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The remainder on division of W by O is saved to W.

Instruction
DECT – Decrement O and test if zero

Syntax label: DECT O

Operand O can be any of the direct memory, indexed memory addressing, stack.

Description The value in O is decremented and saved back to O. If the new value of O is zero,
the logical result bit of the status register is set.

Example The following code is a simple for loop implementation

LOAD DL[5]
STORE S

for2:
 # do something here
 DECT S
 JMPF for2

Which in pseudo code would be equal to

For i = 1 to 5
 [do something here]

Instruction
CMPGT – Compare O to W – is O greater than W?

Syntax label: CMPGT O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The compare statement. The result of comparison O > W is saved to logical result

PoKeys PoIL processor manual

25 www.poscope.com

bit of the status register.

Instruction
CMPGTE – Compare O to W – is O greater or equal to W?

Syntax label: CMPGTE O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The compare statement. The result of comparison O >= W is saved to logical
result bit of the status register.

Instruction
CMPEQ – Compare O to W – are O and W equal?

Syntax label: CMPEQ O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The compare statement. The result of comparison O == W is saved to logical
result bit of the status register.

Instruction
CMPNEQ – Compare O to W – are O and W not equal?

Syntax label: CMPNEQ O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The compare statement. The result of comparison O != W is saved to logical result
bit of the status register.

Instruction
CMPLTE – Compare O to W – is O lower than or equal to W?

Syntax label: CMPLTE O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The compare statement. The result of comparison O <= W is saved to logical
result bit of the status register.

Instruction
CMPLT – Compare O to W – is O lower than W?

Syntax label: CMPLT O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The compare statement. The result of comparison O < W is saved to logical result
bit of the status register.

Instruction
BITTST – Test bit status

Syntax label: BITTST O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

PoKeys PoIL processor manual

26 www.poscope.com

Description This operation tests the status of the specified bit of the operand. If bit is set, the
logical result bit of the status register is set (and cleared if the bit of the operand
is not set).

Instruction
SHIFTL – Shift W left for O

Syntax label: SHIFTL O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The working register W is shifted left for O places. The result is kept in W. This
operation does not support the ‘rotate’ function – bit that ‘fall-off’ at the left end
of the W register is discarded.

Instruction
SHIFTR – Shift W right for O

Syntax label: SHIFTR O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The working register W is shifted right for O places. The result is kept in W. This
operation does not support the ‘rotate’ function – bit that ‘fall-off’ at the right
end of the W register is discarded.

Instruction
JMP – Jump to program address

Syntax label: JMP O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The PC is loaded with the O.

Instruction
JMPT – Jump to program address if true

Syntax label: JMPT O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The PC is loaded with the O if the logical result bit of the status register is set

Example The following code is a simple for loop implementation

PoKeys PoIL processor manual

27 www.poscope.com

 LOAD DL[0] # i = 0
 STORE D0
 LOAD DL[10] # i = 0
 STORE D4

for:
 # do something here

 LOAD D0
 CMPLT D4
 ADD BL[1]
 STORE D0
 JMPT for

Which in pseudo code would be equal to

For i = 1 to 10
 [do something here]

However, a more appropriate instruction for the ‘for’ loop implementation is
DECT (decrement and test)

Instruction
JMPF – Jump to program address if false

Syntax label: JMPF O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description The PC is loaded with the O if the logical result bit of the status register is not set

Instruction
CALL – Call a subroutine

Syntax label: CALL O

Operand O can be any of the direct memory, indexed memory addressing, stack pop or
literal

Description PC+4 is first put to function address stack, then the PC is loaded with the O.

Instruction
RETURN – Return from subroutine

Syntax label: RETURN

Operand None

Description The PC is loaded with the first function address stack entry.

PoKeys PoIL processor manual

28 www.poscope.com

Start-up configuration
First PoIL instruction should load the configuration byte into working register W. On startup, PoIL

core will execute first command and check the contents of the W. The value is interpreted as

- Bit 0: proceed with core reset code (this will execute code until first task EXIT is encountered)

- Bit 1: proceed with code execution

- Bit 2: disable division by zero and modulus by zero exceptions - these operations will result in

0

- Bit 3: try automatically reloading the project on PoBlocks startup (requires a hash code of the

project to be loaded in the second PoIL command)

Shared data management
First 256 bytes of general purpose memory is reserved for shared data table. Each of 64 shared data

entries uses 32-bit integer entry as specified below:

Bit Description

Bits 31:30 Access rights (bit 30: read, bit 31: write)

Bits 29:28 Data type (as specified in table below - Operand data type)

Bits 27:25 Bit ID (for data type 0)

Bits 15:0 Data address pointer - 16-bit

PoKeys PoIL processor manual

29 www.poscope.com

Custom PoIL block application examples

Min, max, average meter over interval

Task: The block should calculate the average of the input value, find its minimum and maximum

value. The block should have the enable input, clock input for signalizing each measurement and the

reset input to reset the values back to default

We will define 4 input variables, 3 output variables, 4 32-bit variables and one 1-bit (logic) variable.

The following block is entered into ‘Variables declaration’

Value : INPUT(1,int32)

EN : INPUT(2,bit)

RST : INPUT(3,bit)

CLK : INPUT(4,bit)

min : OUTPUT(1,int32)

max : OUTPUT(2,int32)

average : OUTPUT(3,int32)

sum : int32

counter : int32

minValue : int32

maxValue : int32

clkBit : bit

The code checks the reset input first, then checks enable and clock signals. If all is ok, minimum,

maximum and the cumulative sum of input values is calculated. In the end, the average is calculated

from the cumulative sum and number of measurements.

Check reset - load 0

LOAD DL[0]

Compare 0 < RST

CMPLT RST

JMPF checkEnable

We have 0 already in W register

STORE sum

STORE counter

STORE maxValue

LOAD DL[1000000000]

STORE minValue

JMP exitBlock

Check enable

checkEnable:

CMPLT EN

JMPF exitBlock

Check clock signal (condition: CLK[k] AND (NOT CLK[k-1]))

LOAD CLK

STORE S # put the current clock input state to stack

AND !clkBit

POP clkBit # save the current clock input state to clkBit memory

CMPEQ DL[1]

JMPF exitBlock

Increase counter

LOAD counter

ADD DL[1]

STORE counter

Add input...

LOAD sum

PoKeys PoIL processor manual

30 www.poscope.com

ADD Value

STORE sum

Check min and max

LOAD Value

CMPLT minValue

JMPF checkMax

STORE minValue

checkMax:

CMPGT maxValue

JMPF exitBlock

STORE maxValue

exitBlock:

LOAD minValue

STORE min

LOAD maxValue

STORE max

Produce average

LOAD counter

CMPGT DL[0]

JMPT findAverage # if counter is zero, skip division

LOAD DL[0]

STORE average

JMP exitFinal

Calculate the average

findAverage:

LOAD sum

DIV counter

STORE average

exitFinal:

PoKeys PoIL processor manual

31 www.poscope.com

Grant of license

The material contained in this release is licensed, not sold. PoLabs grants a license to the person who installs this software,

subject to the conditions listed below.

Access
The licensee agrees to allow access to this software only to persons who have been informed of and agree to abide by these

conditions.

Usage
The software in this release is for use only with PoLabs products or with data collected using PoLabs products.

Copyright
PoLabs claims the copyright of, and retains the rights to, all material (software, documents etc) contained in this release.

You may copy and distribute the entire release in its original state, but must not copy individual items within the release

other than for backup purposes.

Liability
PoLabs and its agents shall not be liable for any loss or damage, howsoever caused, related to the use of PoLabs equipment

or software, unless excluded by statute.

Fitness for purpose
No two applications are the same, so PoLabs cannot guarantee that its equipment or software is suitable for a given

application. It is therefore the user's responsibility to ensure that the product is suitable for the user's application.

Mission Critical applications
Because the software runs on a computer that may be running other software products, and may be subject to interference

from these other products, this license specifically excludes usage in 'mission critical' applications, for example life support

systems.

Viruses
This software was continuously monitored for viruses during production, however the user is responsible for virus checking

the software once it is installed.

Support
No software is ever error-free, but if you are unsatisfied with the performance of this software, please contact our technical

support staff, who will try to fix the problem within a reasonable time.

Upgrades
We provide upgrades, free of charge, from our web site at www.poscope.com. We reserve the right to charge for updates

or replacements sent out on physical media.

Trademarks
Windows is a registered trademark of Microsoft Corporation. PoKeys, PoKeys55, PoKeys56U, PoKeys56E, PoScope, PoLabs

and others are internationally registered trademarks.

support: www.poscope.com

http://www.poscope.com/

	PoKeys PoIL processor
	Architectural overview
	Status register (8-bit)
	Stack
	Program counter
	Multitasking
	Addressing modes
	Data types
	Data stack operations

	Memory organization
	Code memory with system functions calls
	Data memory

	PoIL instruction set
	PoIL instruction format
	Operand data types (sizes)
	Instruction set summary
	Core states
	Comments
	Vector commands
	Address labels
	Syntax
	Direct addressing mode
	Examples:

	Index addressing mode
	Examples:

	Stack push/pop
	Examples:

	Literals
	Examples:

	Detailed instruction description

	Start-up configuration
	Shared data management
	Custom PoIL block application examples
	Min, max, average meter over interval

	Grant of license
	Access
	Usage
	Copyright
	Liability
	Fitness for purpose
	Mission Critical applications
	Viruses
	Support
	Upgrades
	Trademarks

